機器學習在股票價格預測中具有重要的應用。在這個機器學習項目中,我們將討論預測股票收益。這是一個非常復雜的任務,并且具有不確定性。我們將把這個項目分為兩個部分:
- 首先,我們將學習如何使用LSTM神經網絡預測股票價格。
- 然后,我們將使用Plotly dash 構建儀表板以進行股票分析。
股票價格預測項目
數據集
- 為了建立股票價格預測模型,我們將使用NSE TATA GLOBAL數據集。這是來自印度國家證券交易所Tata Global Beverages Limited的Tata飲料數據集:Tata Global數據集
- 為了開發用于股票分析的儀表盤,我們將使用包含多個股票的另一個股票數據集,例如Apple,Microsoft,Facebook:Stocks Dataset
源代碼
請留言
使用LSTM預測股價
1.導入:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize']=20,10
from keras.models import Sequential
from keras.layers import LSTM,Dropout,Dense
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize']=20,10
from keras.models import Sequential
from keras.layers import LSTM,Dropout,Dense
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize']=20,10
from keras.models import Sequential
from keras.layers import LSTM,Dropout,Dense
from sklearn.preprocessing import MinMaxScaler
2.讀取數據集:
df=pd.read_csv("NSE-TATA.csv")
df.head()
3.從數據框分析收盤價:
df["Date"]=pd.to_datetime(df.Date,format="%Y-%m-%d")
df.index=df['Date']
plt.figure(figsize=(16,8))
plt.plot(df["Close"],label='Close Price history')
4.按日期時間對數據集進行排序,然后過濾“日期”和“關閉”列:
data=df.sort_index(ascending=True,axis=0)
new_dataset=pd.DataFrame(index=range(0,len(df)),columns=['Date','Close'])
for i in range(0,len(data)):
new_dataset["Date"][i]=data['Date'][i]
new_dataset["Close"][i]=data["Close"][i]
5.標準化新的過濾數據集:
scaler=MinMaxScaler(feature_range=(0,1))
final_dataset=new_dataset.values
train_data=final_dataset[0:987,:]
valid_data=final_dataset[987:,:]
new_dataset.index=new_dataset.Date
new_dataset.drop("Date",axis=1,inplace=True)
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data=scaler.fit_transform(final_dataset)
x_train_data,y_train_data=[],[]
for i in range(60,len(train_data)):
x_train_data.append(scaled_data[i-60:i,0])
y_train_data.append(scaled_data[i,0])
x_train_data,y_train_data=np.array(x_train_data),np.array(y_train_data)
x_train_data=np.reshape(x_train_data,(x_train_data.shape[0],x_train_data.shape[1],1))
6.建立和訓練LSTM模型:
lstm_model=Sequential()
lstm_model.add(LSTM(units=50,return_sequences=True,input_shape=(x_train_data.shape[1],1)))
lstm_model.add(LSTM(units=50))
lstm_model.add(Dense(1))
inputs_data=new_dataset[len(new_dataset)-len(valid_data)-60:].values
inputs_data=inputs_data.reshape(-1,1)
inputs_data=scaler.transform(inputs_data)
lstm_model.compile(loss='mean_squared_error',optimizer='adam')
lstm_model.fit(x_train_data,y_train_data,epochs=1,batch_size=1,verbose=2)
7.抽取數據集樣本,以使用LSTM模型進行股票價格預測:
X_test=[]
for i in range(60,inputs_data.shape[0]):
X_test.append(inputs_data[i-60:i,0])
X_test=np.array(X_test)
X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1))
predicted_closing_price=lstm_model.predict(X_test)
predicted_closing_price=scaler.inverse_transform(predicted_closing_price)
8.保存LSTM模型:
lstm_model.save("saved_model.h5")
9.用實際股價可視化預測的股價:
train_data=new_dataset[:987]
valid_data=new_dataset[987:]
valid_data['Predictions']=predicted_closing_price
plt.plot(train_data["Close"])
plt.plot(valid_data[['Close',"Predictions"]])
您可以觀察到LSTM預測的股價幾乎與實際股價相似。
使用Plotly dash構建儀表板
在本節中,我們將構建一個儀表板來分析股票。Dash是一個python框架,提供了flask和react.js的抽象,以構建分析型Web應用程序。
在繼續之前,您需要安裝dash。在終端中運行以下命令。
pip3 install dash
pip3 install dash-html-components
pip3 install dash-core-components
現在制作一個新的python文件stock_app.py并粘貼以下腳本:
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.graph_objs as go
from dash.dependencies import Input, Output
from keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import numpy as np
app = dash.Dash()
server = app.server
scaler=MinMaxScaler(feature_range=(0,1))
df_nse = pd.read_csv("./NSE-TATA.csv")
df_nse["Date"]=pd.to_datetime(df_nse.Date,format="%Y-%m-%d")
df_nse.index=df_nse['Date']
data=df_nse.sort_index(ascending=True,axis=0)
new_data=pd.DataFrame(index=range(0,len(df_nse)),columns=['Date','Close'])
for i in range(0,len(data)):
new_data["Date"][i]=data['Date'][i]
new_data["Close"][i]=data["Close"][i]
new_data.index=new_data.Date
new_data.drop("Date",axis=1,inplace=True)
dataset=new_data.values
train=dataset[0:987,:]
valid=dataset[987:,:]
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data=scaler.fit_transform(dataset)
x_train,y_train=[],[]
for i in range(60,len(train)):
x_train.append(scaled_data[i-60:i,0])
y_train.append(scaled_data[i,0])
x_train,y_train=np.array(x_train),np.array(y_train)
x_train=np.reshape(x_train,(x_train.shape[0],x_train.shape[1],1))
model=load_model("saved_model.h5")
inputs=new_data[len(new_data)-len(valid)-60:].values
inputs=inputs.reshape(-1,1)
inputs=scaler.transform(inputs)
X_test=[]
for i in range(60,inputs.shape[0]):
X_test.append(inputs[i-60:i,0])
X_test=np.array(X_test)
X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1))
closing_price=model.predict(X_test)
closing_price=scaler.inverse_transform(closing_price)
train=new_data[:987]
valid=new_data[987:]
valid['Predictions']=closing_price
df= pd.read_csv("./stock_data.csv")
app.layout = html.Div([
html.H1("Stock Price Analysis Dashboard", style={"textAlign": "center"}),
dcc.Tabs(id="tabs", children=[
dcc.Tab(label='NSE-TATAGLOBAL Stock Data',children=[
html.Div([
html.H2("Actual closing price",style={"textAlign": "center"}),
dcc.Graph(
id="Actual Data",
figure={
"data":[
go.Scatter(
x=train.index,
y=valid["Close"],
mode='markers'
)
],
"layout":go.Layout(
title='scatter plot',
xaxis={'title':'Date'},
yaxis={'title':'Closing Rate'}
)
}
),
html.H2("LSTM Predicted closing price",style={"textAlign": "center"}),
dcc.Graph(
id="Predicted Data",
figure={
"data":[
go.Scatter(
x=valid.index,
y=valid["Predictions"],
mode='markers'
)
],
"layout":go.Layout(
title='scatter plot',
xaxis={'title':'Date'},
yaxis={'title':'Closing Rate'}
)
}
)
])
]),
dcc.Tab(label='Facebook Stock Data', children=[
html.Div([
html.H1("Facebook Stocks High vs Lows",
style={'textAlign': 'center'}),
dcc.Dropdown(id='my-dropdown',
options=[{'label': 'Tesla', 'value': 'TSLA'},
{'label': 'Apple','value': 'AAPL'},
{'label': 'Facebook', 'value': 'FB'},
{'label': 'Microsoft','value': 'MSFT'}],
multi=True,value=['FB'],
style={"display": "block", "margin-left": "auto",
"margin-right": "auto", "width": "60%"}),
dcc.Graph(id='highlow'),
html.H1("Facebook Market Volume", style={'textAlign': 'center'}),
dcc.Dropdown(id='my-dropdown2',
options=[{'label': 'Tesla', 'value': 'TSLA'},
{'label': 'Apple','value': 'AAPL'},
{'label': 'Facebook', 'value': 'FB'},
{'label': 'Microsoft','value': 'MSFT'}],
multi=True,value=['FB'],
style={"display": "block", "margin-left": "auto",
"margin-right": "auto", "width": "60%"}),
dcc.Graph(id='volume')
], className="container"),
])
])
])
@app.callback(Output('highlow', 'figure'),
[Input('my-dropdown', 'value')])
def update_graph(selected_dropdown):
dropdown = {"TSLA": "Tesla","AAPL": "Apple","FB": "Facebook","MSFT": "Microsoft",}
trace1 = []
trace2 = []
for stock in selected_dropdown:
trace1.append(
go.Scatter(x=df[df["Stock"] == stock]["Date"],
y=df[df["Stock"] == stock]["High"],
mode='lines', opacity=0.7,
name=f'High {dropdown[stock]}',textposition='bottom center'))
trace2.append(
go.Scatter(x=df[df["Stock"] == stock]["Date"],
y=df[df["Stock"] == stock]["Low"],
mode='lines', opacity=0.6,
name=f'Low {dropdown[stock]}',textposition='bottom center'))
traces = [trace1, trace2]
data = [val for sublist in traces for val in sublist]
figure = {'data': data,
'layout': go.Layout(colorway=["#5E0DAC", '#FF4F00', '#375CB1',
'#FF7400', '#FFF400', '#FF0056'],
height=600,
title=f"High and Low Prices for {', '.join(str(dropdown[i]) for i in selected_dropdown)} Over Time",
xaxis={"title":"Date",
'rangeselector': {'buttons': list([{'count': 1, 'label': '1M',
'step': 'month',
'stepmode': 'backward'},
{'count': 6, 'label': '6M',
'step': 'month',
'stepmode': 'backward'},
{'step': 'all'}])},
'rangeslider': {'visible': True}, 'type': 'date'},
yaxis={"title":"Price (USD)"})}
return figure
@app.callback(Output('volume', 'figure'),
[Input('my-dropdown2', 'value')])
def update_graph(selected_dropdown_value):
dropdown = {"TSLA": "Tesla","AAPL": "Apple","FB": "Facebook","MSFT": "Microsoft",}
trace1 = []
for stock in selected_dropdown_value:
trace1.append(
go.Scatter(x=df[df["Stock"] == stock]["Date"],
y=df[df["Stock"] == stock]["Volume"],
mode='lines', opacity=0.7,
name=f'Volume {dropdown[stock]}', textposition='bottom center'))
traces = [trace1]
data = [val for sublist in traces for val in sublist]
figure = {'data': data,
'layout': go.Layout(colorway=["#5E0DAC", '#FF4F00', '#375CB1',
'#FF7400', '#FFF400', '#FF0056'],
height=600,
title=f"Market Volume for {', '.join(str(dropdown[i]) for i in selected_dropdown_value)} Over Time",
xaxis={"title":"Date",
'rangeselector': {'buttons': list([{'count': 1, 'label': '1M',
'step': 'month',
'stepmode': 'backward'},
{'count': 6, 'label': '6M',
'step': 'month',
'stepmode': 'backward'},
{'step': 'all'}])},
'rangeslider': {'visible': True}, 'type': 'date'},
yaxis={"title":"Transactions Volume"})}
return figure
if __name__=='__main__':
app.run_server(debug=True)
現在運行此文件并在瀏覽器中打開應用程序:
python3 stock_app.py[object Object]
總結
股票價格預測是面向初學者的機器學習項目;在本教程中,我們學習了如何開發股票成本預測模型以及如何構建交互式儀表板進行庫存分析。我們使用LSTM模型實施了股票市場預測。另外,用Plotly dashpython框架構建儀表板。
來源:生活資訊網
評論前必須登錄!
立即登錄 注冊